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Abstract

Perceptual decision-making involves multiple cognitive processes, including accumulation of sensory evidence, planning, and
executing a motor action. How these processes are intertwined is unclear; some models assume that decision-related processes
precede motor execution, whereas others propose that movements reflecting ongoing decision processes occur before commit-
ment to a choice. Here we combine two complementary methods to study the relationship between decision processes and the
movements leading up to a choice. The first is a free-response pulse-based evidence accumulation task, in which stimuli con-
tinue until choice is reported, and the second is a motion-based drift diffusion model (mDDM), in which movement variables from
video pose estimation constrain decision parameters on a trial-by-trial basis. We find that the mDDM provides a better fit to rats’
decisions in the free-response accumulation task than traditional drift diffusion models. Interestingly, on each trial we observed a
period, before choice, that was characterized by head immobility. The length of this period was positively correlated with the
rats’ decision bounds, and stimuli presented during this period had the greatest impact on choice. Together these results sup-
port a model in which internal decision dynamics are reflected in movements and demonstrate that inclusion of movement pa-
rameters improves the performance of diffusion-to-bound decision models.

NEW & NOTEWORTHY In this study we combine a novel pulse-based evidence accumulation task with a newly developed
motion-based drift diffusion model (mDDM). In this model, we incorporate movement parameters derived from high-resolution
video data to estimate parameters of the model on a trial-by-trial basis. We find that this new model is an improved description
of animal choice behavior.

accumulation; decision-making; motion tracking; response time

INTRODUCTION

Perceptual decision-making is a complex and integral part
of our interaction with the world. It involves the accumula-
tion of sensory evidence, comparison with internal models,
and subsequent decision commitment (1). This process
allows us to select the appropriate motor response based on
the evidence available. Traditional models conceptualize
perceptual decision-making as a serial process in which evi-
dence accumulation precedes decision commitment and
motor execution (2). More recent studies suggest an alterna-
tive model in which evidence accumulation and motor
actions occur in parallel (3–6). In this model, aspects of

ongoing motor activity may reflect underlying cognitive
dynamics (5–8). Reconciling these models has been chal-
lenging, and the relationship between motor actions and
cognitive processing remains unclear (9, 10).

To better understand how movement is related to the de-
cision-making process, we developed and applied two com-
plementary methods. The first is a free-response evidence
accumulation task for rodents. In this task, inspired by previ-
ous pulse-based accumulation tasks (11–14), agents observe a
series of flashes from two choice ports. Selection of the
choice port associated with the higher flash probability is
rewarded with a drop of sugar water. This task has two key
features: rats are free to move at any time of the cue period,
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i.e., no head or nose fixation is involved, and evidence is pre-
sented from trial initiation until a choice is reported. This
design allowed us to characterize animal movements and evi-
dence accumulation throughout the duration of a trial and to
study howmovements and decision processes are interrelated.
The second method is a drift diffusion model (DDM), which
incorporates pose estimation to constrain decision parameters
on a trial-by-trial basis. In this method, termedmDDM, neural
network-based video pose estimation is used to track the
movements of a decision-maker moment by moment. These
movement parameters are then used to constrain decision pa-
rameters of the DDMon a trial-by-trial basis.

We trained male and female rats to perform the free-
response task in an automated operant training facility. Rats
learned the task quickly, exhibited high accuracy, and
showed hallmarks of evidence accumulation, including
response time (RT) distributions that are well fit by a tradi-
tional DDM. In parallel, we recorded behavioral videos of
rats performing the task and then fit the mDDM. Using this
approach, we find that the mDDM outperforms traditional
DDMs, based on standard model comparison metrics, and
provides a trial-by-trial estimate of decision parameters
including starting point, nondecision time, and decision
threshold. Interestingly, we also observed a period of relative
immobility, before movement onset, and that evidence pre-
sented during this period was a better predictor of subse-
quent choice than later evidence. Together these results are
consistent with a model of decision-making in which move-
ments reflect the internal dynamics of the decision process
but there exists a period of deliberation, before movements,
when most evidence is accumulated. In addition, the task
and modeling approach we describe is well suited for study-
ing the decision-making process and could be paired with
neural recordings in future studies to further characterize
perceptual decision-making in rats and other species.

MATERIALS AND METHODS
All experiments and procedures were performed

in accordance with protocols approved by the Boston
University Animal Care and Use Committee. Long Evans
adult rats (N ¼ 13; aged 3 mo to 2 yr) were purchased from
Taconic or bred in house. Both male (N ¼ 3) and female
(N ¼ 10) rats were used and trained in the same room at
the same time. Rats were food restricted to 90–100% of
their body weight and fed once per day (typically 3 or 4
pellets of food per day). They received 0.025–0.04 mL
(depending on the session and rat) of 10% sucrose (100 g/L)
as rewards. Reward volume was consistent within a session.
Daily trained rats were housed on a 14:10-h ON:OFF light
schedule, with the ON phase corresponding to daylight
hours in Boston, MA.

Behavioral Control System

The behavioral training was performed in a high-through-
put semiautomated facility (15, 16). Rats were trained in cus-
tom acrylic chambers with three nose ports. Nose ports were
three-dimensional (3-D) printed (Sanworks or custom made)
and equipped with a visible LED for stimulus delivery
(Sanworks), a peristaltic pump for reward delivery, and
an infrared (IR) LED and photodetector as a beam break

(Sanworks). Behavioral control software to implement the
task and control individual boxes was written in MATLAB.
Boxes were controlled through a Teensy-basedmicrocontrol-
ler system (Bpod Sanworks). A custom-written Python appli-
cation was used to control multiple Bpod instances from a
single control computer, requiring an edited version of the
Bpod MATLAB software library (edited Bpod library: https://
github.com/RatAcad/Bpod_Gen2; custom Python applica-
tion: https://github.com/RatAcad/BpodAcademy). Further
details about the software implementation can be found in
the respective code repositories. The floor of the chambers
contained bedding that was changed after each session.

Daily Training

Rats were housed in pairs in an animal facility and
moved to the training room in the laboratory each morn-
ing for training. Rats ran for 2-h shifts, 5 days per week in
the late morning (10:00 AM–noon) or early afternoon (1:00
PM–3:00 PM). Feeding was conducted in the late after-
noon after behavioral training (1:00 PM–4:00 PM). Each
chamber also contained a video camera mounted above
the chamber.

Training Pipeline

Rats were rewarded with 10% sucrose at all stages of train-
ing and testing. Training took 1–4 wk depending on the rat
and progressed through three stages. In stage 1 (1–3 days),
rats were rewarded for inserting their nose into a side port
with an illuminated LED. In stage 2 (1–21 days), rats received
reward for inserting their nose into the center port and then
the side port with an illuminated LED. In stage 3, they
received a reward for inserting their nose into the center port
and then the side port with a flashing LED. Once rats
reached criterion 80–100% correct, the probability of flashes
on the incorrect side increased in the following way 100:0 !
90:10 ! 80:20. Progression through this third stage took 1–
2 days per condition. After completion of all stages and con-
ditions, rats performed the task with a flash probability of
75:25.

Behavioral Task

At the start of a trial, the light in the center port turned on,
indicating that the rat could initiate the trial at its leisure
(Fig. 1A). Once the rat nose poked in the center port, a simul-
taneous flash would occur in the left and right ports, signal-
ing the start of the trial. After this one light flash on both
sides, the rat would see a series of light flashes according to a
Bernoulli process: every 100 ms, the rat would see a flash on
either the right or the left side with a probability of 75:25 that
the flash would occur on the correct side versus the incorrect
side; the correct side was drawn randomly on each trial. To
record a response, the rat nose poked in either the left or
right port, and the series of light flashes would terminate as
soon as this decision was recorded. If the rat responded cor-
rectly, the light in the correct side port turned on for 2 s and
a 30-μL sucrose water reward was delivered immediately. If
the rat responded incorrectly, all lights turned off and no
reward was delivered, and new trials would start after a 2-s
delay. For daily testing, rats participated in 2-h sessions
Monday–Friday.
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Diffusion Models of Decision-Making

Two diffusion-to-bound models were applied to behav-
ioral data: the extended drift diffusionmodel (17) and a novel
pulsed evidence drift diffusionmodel based on Ref. 11.

Both modes assume that evidence, represented by the de-
cision variable (x), changes over time until it reaches a deci-
sion bound. The magnitude of the decision bound (a), which
represents the total evidence necessary for an agent to come

to a decision, is a free parameter. In addition to the decision
bound (x), both models share two additional parameters that
govern the how x changes over time:

1) starting point, x0, which represents the initial value of
the decision variable (x) and captures the side bias of the
animal

2) drift-rate, v, which represents the strength of the
evidence
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Figure 1. A free-response pulse-based accumulation task for rats. A: schematic of the behavioral task. Rats initiate a trial by inserting their nose into the
center port of a 3-port operant training chamber. After initiation, rats are presented with a series of flashes from the left and right ports according to a
Bernoulli process. The trial ends when rats insert their nose into 1 of the 2 side ports. Rats obtain reward if they choose the side with the higher flash
probability. B: timing of events in an example behavioral trial. C: behavioral performance of rats performing the task. Colored dots represent individual
animals (n ¼ 3 male, blue dots; 10 female, green dots) Rats exhibit similar trial numbers [1-way repeated-measures (RM) ANOVA, P ¼ 0.458, F ¼ 0.592]
(top) and accuracy (1-way RM ANOVA, P ¼ 0.469, F ¼ 0.564) and response time (RT) (1-way RM ANOVA, P ¼ 0.393, F ¼ 0.789) (bottom) across sexes.
Left: the mean across days for individual rats. Right: the standard deviation across days for individual rats. D: histogram of RTs across all rats. E: on trials
with greater RTs, rats exhibited greater accuracy. Black dots indicate data; red line indicates best fit from a generalized additive mixed model. F: histo-
gram of flash differences (#R � #L) across the cue period of all trials. Positive values represent greater rightward flashes. G: accuracy increases with dif-
ference in flashes (absolute value of #R� #L). Black dots indicate data; red line indicates best fit from a generalized additive mixed model.
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The change in the decision variable (dx) over time is gov-
erned by the following equation:

dx ¼ vi � dt þ cdW

where cdW is the Gaussian noise term that represents the
diffusion of the decision variable over time. The extended
drift diffusionmodel also allows for random trial-to-trial var-
iability in the drift rate and the starting point:

vi �N v; hvð Þ

x0i
�Unif x0 � hx0 ; x0 þ hx0ð Þ

Once x reaches the decision bound, a decision is reached
(a for right choices, �a for left choices). The time taken for x
to reach the decision bound is the decision time. The reac-
tion time of the animals is the decision time plus another
free parameter, the nondecision time (ndt). The ndt is typi-
cally interpreted to include the time it takes for processes
that are not related to evidence accumulation, such as motor
movements to the decision target (18). The ndt can vary from
trial to trial based on the following equation:

ndti �Unif ndt� hndt;ndt þ hndtð Þ
In the pulse diffusion model, evidence is accumulated per

unit of stimulus, where st is the stimulus at time t: st ¼ 1 dur-
ing a right pulse, st ¼ �1 during a left pulse, and st ¼ 0 other-
wise, as opposed to continuously in time.

dx ¼ vt � st � dt þ cdW

Additionally, consistent with the pulsed evidence accu-
mulationmodel in Ref. 11, the drift rate does not vary trial by
trial, but it drifts over the course of the trial:

vt �N v; hvð Þ
Furthermore, in this model, variability in the starting

point across trials follows a normal distribution rather than a
uniform distribution:

x0i
�N x0; hx0ð Þ

For model comparison, we used the Bayesian information
criterion (BIC) calculated as

BIC ¼ k � ln nð Þ � 2 � ln L̂ð Þ
where k is the number of free parameters, n is the number of
data points, and L̂ is the likelihood of the fittedmodel.

Video Recording and Image Processing

Video was recorded during a subset of daily testing sessions
with USB webcams. Videos were recorded at 30 fps with the
same custom Python application used to control behavioral
boxes (https://github.com/RatAcad/BpodAcademy). To syn-
chronize video data with behavioral data, the time of each
camera frame and a transistor-transistor logic (TTL) signal
indicating the start of the trial (center light turned on) and
trial initiation (nose poke in center port) were both recorded
with the Python time package. TTL signals were sent from the
Bpod State Machine and recorded using serial input from a
Teensy 3.2microcontroller.

The position of the rat during a behavioral session was
extracted from the video data with DeepLabCut [Mathis et al.
(19)]. Experimenters identified the position of the ears, nose,
and back of the head (see Fig. 3A) on 620 frames across five

animals, which were used as training data (95% of frames)
and validation (5% of frames). A ResNet-50 base neural net-
work was used for 160,000 training iterations with a test
error of 6 pixels (640 � 480-pixel images). A p-cutoff of 0.75
was used to condition (X, Y) coordinates for future analysis.

To standardize rats’ positions across sessions despite
slight differences in camera position and angle in different
boxes, keypoints were first corrected for any translation and
rotation with the following procedure:

1) The (X, Y) coordinates of each nose poke were defined as
the average coordinate of the nose at the time of each
nose poke (e.g., to find the center nose poke, the average
of the nose position on frames that aligned in time with
rats’ nose poke in the center port).

2) All keypoints were translated such that the center nose
poke was at coordinate (0,0).

3) Keypoints were rotated and scaled such that the left and
right nose poke positions were at coordinates (�1, 0) and
(1, 0), respectively.

Finally, two keypoints of interest were computed: 1) the
center of the head as the center point in between the nose,
back of head, and between the ears and 2) the angle of the
head relative to the nose poke wall as the angle of the
intersection between a line drawn from the nose and back of
head and a line drawn between the nose pokes.

Sinusoidal Movement Model

To simplify the complex movement trajectories of rats
(typically 100–300 observations per trial), we fit a sinusoidal
model to each rat’s head position for every trial. This model
reduces the dimensionality of the data while capturing key
aspects of the rat’s movement. In this model we define the
following five free parameters:

1) m_delay (movement delay): the starting point of the si-
nusoidal curve, i.e. how much time elapses before the
animal starts moving

2) p_offset (position_offset): the offset of the curve from the
horizontal center

3) A (amplitude): the amplitude of the sinusoidal curve
4) j (starting phase): the initial phase of the sinusoidal

curve; this parameter controls “where” on the sine wave
the animal begins its movement

5) x (sinusoidal period): how quickly the animal moves
(i.e., did the rat accelerate more quickly to the port, in-
dicative of a high value for x)

Before movement (i.e., when the time in the trial is less
thanm_delay) the position of the animal’s head is defined by
p_offset. After movement the position of the animal’s head is
defined by

predicted trajectory ¼ choice � A� sin x � time þ j
dt

� �

þ p offset

where “choice” is the rat’s choice on the trial (coded as�1 for
left, 1 for right), dt ¼ 0.01 is the resolution of the trajectories,
and “time” is the elapsed time since m_delay. Thus, the free
parameters of the model control the overall characteristics of
the sinusoidal wave [e.g., how tall is the wave (A), how
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shifted is the wave relative to center (p_offset), where in the
sine wave do we start (j), etc.).

Free parameters were estimated by maximizing the R2

between the predicted and observed trajectories using gener-
alized simulated annealing (GenSA R package; Ref. 20).
Letting yi be the ith datapoint in a dataset, ŷi the estimated
value for the ith datapoint, and �y the mean of the dataset, R2

is typically defined as

R2 ¼ 1�
XN

i¼1
yi � ŷið Þ2XN

i¼1
yi � �yð Þ2

More intuitively, R2 represents the proportion of variance
in the dataset that can be explained by themodel.

Lapse Logistic Regression and Hierarchical Bayesian
Logistic Regression

The choice behavior was modeled with a modified logistic
regression with a lapse parameter. The probability of choos-
ing right, Pr(R), is given by

Pr Rð Þ ¼ w
2
þ 1� w

1 þ exp �ðb1DFlashes þ b0Þ
� �

where w is the lapse parameter such that 0 � w � 1, b1 is the
slope parameter controlling the sensitivity to the flash differ-
ence, and b0 is a bias term. The model can be interpreted as
follows:
1) With probability w, the animal “lapses,” meaning that

despite strong sensory evidence the animal makes an
incorrect decision. This then implies that animals
choose right on a lapse trial with probability w

2.
2) With probability 1 � w, the animal makes a choice based

on a standard logistic function.

To then model the choice behavior of animals when the
number of flash bins in the pre and post periods are identical
(i.e., the samenumber offlashes occurred from trial initiation
to when an animal moved and after movement until choice)
we fit a hierarchical Bayesian logistic regression. Thus, we
modeled theprobability of ananimal choosing right as

logit Pr Rð Þð Þ ¼ ða0 þ b0Þ þ a1 þ b1ð Þ�DFlashes

where b0 and b1 are the fixed effects (i.e., the population-
level intercept and slope respectively) and a0 and a1 are the
random effects (i.e., subject-specific deviations from the
population-level effects). We used weakly informative priors
for all parameters:

b0 �N 0; 10ð Þ

b1 �N 0; 10ð Þ

a0 �N 0;rð Þ

a1 �N 0;rð Þ

r � HalfCauchy 2ð Þ
The model was fit with the Bambi package (21) in Python,

which utilizes the No-U-Turn Sampler (NUTS), a variant of
Hamiltonian Monte Carlo. We ran 4 chains with 2,000 itera-
tions each, including a 1,000-iteration warm-up period,
resulting in 4,000 postwarm-up samples for each parameter.

Convergence was assessed with the Gelman–Rubin statistic
(R^ ), ensuring all values were below 1.1, and by visual inspec-
tion of trace plots for each parameter.

Data Analysis and Model Fitting

Data analysis was performed in R version 4.3.1. Calculations
of standard statistical tests [e.g., Kolmogorov–Smirnov (KS)
tests, ANOVAs] were performed with the stats and aov pack-
ages. To fit the accuracy versus response time curve in Fig. 1E,
we used the mgcv (22) package to fit a generalized additive
mixed model. The beta regression was fit with the glmmTMB
(23) package.

DDM and pulse DDMmodels were fit with a customR pack-
age (rddm; https://github.com/gkane26/rddm). For compari-
son of the DDM and the pulse DDM, parameters were
estimated by maximizing the quantile maximum probability
estimate (24, 25) with differential evolution as the optimiza-
tion routine (26). To estimate the influence of movement pa-
rameters from the sinusoidal model on trial-by-trial changes
in DDM parameters, DDM model parameters were estimated
by maximum likelihood estimation. Trial-by-trial likelihoods
(as implemented in the rddm package) were calculated with
the rtdists R package (27).

To fit our lapse parameter binomial generalized linear
model (GLM), we wrote a custom link function in R and per-
formed constrained optimization of the negative log-likelihood
function using the L-BFGS-B algorithm in the optim function
in R such that the lapse parameter was bounded between 0
and 1. For the optimization we used 10-fold cross-validation.
To do this, we fit themodel to each rat and did cross-validation
(CV) within each animal’s trial data.

All plots were generated with ggplot2 andmatplotlib.

RESULTS

Rats Accumulate Evidence in a Free-Response
Perceptual Decision-Making Task

We developed a free-response version of a visual pulse-
based evidence accumulation task (12, 28, 29), which rats
performed in a three-port operant chamber (Fig. 1A). To initi-
ate the trial, the rat would nose poke in the center port. After
trial initiation, lights on the left- and right-side reward ports
flashed bilaterally, indicating the start of the cue period.
During the cue period, the left- and right-side light ports
flickered based on a Bernoulli process (Fig. 1B). The odds
were set so that, in each 100-ms time bin of the cue period,
the correct reward port would illuminate briefly (10 ms) with
a 75% probability, whereas the incorrect port had a 25%
chance of illuminating. During the cue period the animal
was free to respond at any time. In contrast to previous ver-
sions of the pulse-based accumulation tasks, rats were not
required to maintain fixation at the center poke and could
move their head freely during the cue period (11–13). The
trial ended when the rat poked its nose into one of the two
side light pokes. If the poke with the higher generative prob-
ability was selected, the animal received a drop of sugar
water (10% sucrose); if the opposite side was selected, the
animal received no reward.

Rats were trained in a 2-h session once per day, 5 days a
week. After progressing through a series of training stages
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(MATERIALS AND METHODS), rats performed an average of 409
trials per session, reached high accuracy (76% correct on aver-
age), and exhibited long RTs (mean¼ 0.956 s), defined here as
the time difference between the initiation of the trial and the
animal reporting its choice (Fig. 1, C and D). We observed
no differences between males or females in trials per ses-
sion [1-way repeated-measures (RM) ANOVA, P ¼ 0.458, F ¼
0.592], accuracy (1-way RM ANOVA, P ¼ 0.469, F ¼ 0.564),
or RT (1-way RM ANOVA, P ¼ 0.393, F ¼ 0.789). Consistent
with an evidence accumulation strategy, rats exhibited
increased accuracy on trials with longer RTs (Fig. 1, D and
E) and greater evidence favoring one side (Fig. 1, F and G).

Next, we sought to evaluate how well the rats’ RT distribu-
tions and accuracy were fit by drift diffusion models (Fig. 2).
To do this we fit two variants of the DDM, an extended DDM
and a pulse-based DDM (11, 17). The extended DDM provided
a good description of the rats’ RT distributions (Fig. 2B) and
indicated relatively high decision bounds, consistent with
evidence accumulation. Next, to determine whether the
model fits could be improved by considering the discrete na-
ture of the stimulus, we used a pulse-based DDM (pDDM).
The main difference in the pDDM is that evidence is
only accumulated at the time of stimulus presentation and
not continuously (MATERIALS AND METHODS). Both models
explained the full distribution of choices and RTs equally,
determined by comparing the negative log-likelihoods of the
models (exact 2-sided KS test, P¼ 0.9992; Fig. 2C). Moreover,
we did not observe significant differences in the magnitude
of side bias or nondecision time between the DDM and
pDDM (Fig. 2D). The pDDM did consistently predict larger
drift rates and boundary parameter values (exact 2-sided KS
test, Pdrift rate ¼ 1.923e�7, Pboundary ¼ 0.00275; Fig. 2D); how-
ever, these increases were correlated such that both models
predicted similar RT distributions (Fig. 2B). Taken together,
these results suggest that rats use an evidence accumulation
strategy tomake decisions and that the pDDM and DDMpro-
vide an equally good description of rat RTs during the task.

Rats’ Head Movements during Decision-Making Are
Well Fit by a Sinusoidal Model

In our task rats are free tomove their heads during the cue
period. This provided an opportunity to study head move-
ments during evidence accumulation. We recorded video
from a subset of rats (N ¼ 6), extracted their movement tra-
jectories, and fit a five-parameter sinusoidal model to their
headmovements on each trial.

A ResNet50-based DeepLabCut network (19) was trained
to track the nose, ears, and back of the head of rats as they
performed the perceptual decision-making task (Fig. 3, A
and B). The position of the center of the head and the angle
of the head relative to the nose poke wall were derived from
these keypoints. To characterize movement trajectories
with a small number of interpretable parameters, we utilized
a five-parameter sinusoidal model (see MATERIALS AND

METHODS; Fig. 3C). The sinusoidal model was fit to the head
movements of each rat on each trial and explained most of
the data variance, with a median R2 value of 0.9739 (Fig. 3D).
Model fits declined slightly but significantly for longer-
RT trials [mixed-effects beta regression; P(bRT) < 2e�16)
(Fig. 3E). However, the model provided a good description of
both correct and error trials for both left and right choices

(Fig. 3E). These results suggest that rats’ head movements
during perceptual decision-making in a three-port operant
chamber are well captured by a five-parameter sinusoid
model.

Rats’Movements Provide Information about Internal
Decision Variables

A long-standing question in the field is whether move-
ments before a decision are reflective of the latent decision-
making process (7, 8). To address this question, we tested
whether DDM models with movement information (i.e.,
mDDMs) could explain rat choices and RTs better than a
DDM without movement information (i.e., a traditional
DDM). We developed three different mDDM variants to test
three hypotheses about the relationship between movement
parameters and decision parameters (Fig. 4). Our first hy-
pothesis was that, on each trial, the time spent moving to the
side reward port positively correlates with nondecision time.
This hypothesis was evaluated with a model where the non-
decision time was a function of the movement time (defined
as response time minus the delay in the sinusoidal model).
We referred to this variant as the movement time DDM
(mtDDM) (Fig. 4,A and D).

Our second hypothesis postulated that the delay before a
movement onset predicts the decision boundary parameter.
This hypothesis reflects the intuitive idea that if a rat spends
more time waiting before starting to move, it spends more
time accumulating evidence. To test this hypothesis, we
used a model where the boundary was a linear function of
the delay in the sinusoidal movement model. This variant
was known as the movement delay DDM (mdDDM) (Fig. 4, B
and E).

The third hypothesis proposed a correlation between the
initial position of a rat’s head and its side bias. For example,
if a rat’s head is slightly angled to the right at the start of a
trial, it would bemore likely to go right than if it were angled
slightly to the left. We tested this hypothesis by using a DDM
variant where the side bias parameter was a function of the
side bias as measured by the sinusoidal movement model.
We termed this model the movement orientation DDM
(moDDM) (Fig. 4, C and F).

We compared the performance of each of these new mod-
els to the standard DDM. After fitting to rat behavioral data,
all three movement-informed models (mtDDM, mdDDM,
andmoDDM) resulted in a lower Bayes information criterion
(BIC) value compared to the standard DDM (Fig. 4G).
However, we found that the mtDDM, which estimates the
nondecision time parameter, resulted in the lowest BIC
value. This suggests that the nondecision time variable is the
most crucial for improving model fits, meaning that rats
have significant variability in how much time they take to
report their choices after movement onset, which could be
indicative of other latent dynamics of the decision process.
Overall, these results show that incorporating movement pa-
rameters into decisionmodels can improvemodel fits.

Rats Weight Evidence before Movement Onset Most
Heavily

Our model comparison approach suggests that movement
time is correlated with nondecision time and that the delay
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Figure 2. Response times in the accumulation task are well described by diffusion models. A: schematic of the accumulator value across 50 example tri-
als as predicted by the drift diffusion model (DDM, left) and pulse-based model (right). The top histogram represents model-predicted response times to
the upper boundary (i.e., decisions to go right); the bottom histogram represents model-predicted response times to the bottom boundary (i.e., decisions
to go left). B: histogram of response times (RTs) for a single rat showing correspondence between the data (gray), DDM (light blue line), and pulse model
(dark blue line). C: comparison of the goodness of fit (log-likelihood) for the pulse-based model (y-axis) and DDM (x-axis). Each dot represents a different
animal. D: comparison of 4 parameters, drift rate, boundary, nondecision time, and starting point, between the pulse-based model (y-axis) and DDM (x-
axis). Each dot represents an individual rat. Both models predict similar nondecision times and starting points, whereas the pulse model predicts a larger
drift rate and boundary value.
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in movement onset is correlated with decision bounds. One
intuitive explanation for this result is that the premovement
period reflects a period of deliberation when the animal
weights sensory information more strongly. To assess this
hypothesis, we took advantage of the known timing of sen-
sory pulses and measured the influence of stimuli before
and after movement on the animal’s decision using a bino-
mial generalized linear model (GLM) (Fig. 5, A and B). We fit
three distinct models: “All,” “Before,” and “After.” The All
model represents the differences in right versus left flashes
across the entire trial period. The Before and After models
consider only the differences in flashes before and after

movement onset, respectively. To assess which model fit
best, we used 10-fold cross-validation and employed nega-
tive log-likelihood as the objective measurement (Fig. 5C).
Across all rats, we found that the All and Before models were
similar and performed better than the After model.

Despite these results, it is possible that the After model
performs worse simply because more trials had greater
sensory evidence in the premovement period (Fig. 6A).
Therefore, to further validate these results, we restricted
the available data to trials with an equivalent number of
flashes presented to the rat before movement initiation
and after movement until choice (Fig. 6, A and B). First, we

A B

C D

E

Figure 3. Rats’ head movement trajectories during decision-making are well described by a 5-parameter model. A: schematic of the key tracking points
on the rat head. Colored dots represent the 4 target features tracked by DeepLabCut: nose (red), left ear (orange), right ear (yellow), and back of the
head (green). The teal plus sign and angle indicate the center of head and head angle, respectively, derived from these target features. B: example
images from a single trial overlaid with the position of the target features described in A. Left: the rat entering the center port, with target features for the
previous 10 frames (�300 ms) overlaid. Right: the rat entering the right port, with the target features for the previous 10 frames overlaid. Note the right-
ward trajectory of the animal indicated by the trail of dots reflecting the rightward choice of the animal. C: schematic showing an example trajectory of
the rat’s head position and how each of the 5 parameters alters the fit. Solid line indicates the rat’s headmovement on a single trial, and dashed line indi-
cates how changes in each of the parameters alter the fit. D: trajectories for head position (left) and angle (right) position on 8 example trials. Solid blue
lines indicate the data, and dashed blue lines indicate model fits. E: goodness of fit of the model (R2) across trials with different response times (left) and
across correct and error trials (right).
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evaluated choices on trials in which the sign of accumu-
lated evidence was different before and after movement
(Fig. 6C). We found that, on these trials, rats were strongly
biased to choose the reward port with greater evidence
before movement. Next, we fit the same three models
(Before, After, and All) as in our previous logistic regres-
sion to data from these trials. To maximize statistical
power, we fit a hierarchical Bayesian logistic regression
(see MATERIALS AND METHODS). This approach allowed us to
fit population-level parameters, as well as random varia-
tions at the subject level (see MATERIALS AND METHODS). To
evaluate model performance first, we calculated and

compared the expected log pointwise predictive density
(ELPD), using Bayesian leave-one-out cross-validation
(30). We found that the Before model performed best
(BeforeELPD ¼ �380.40, AllELPD ¼ �420.19, AfterELPD ¼
�595.40). Next, to estimate the accuracy (ability to predict
the choice of the animal) of each model we sampled the
posterior distribution and found that the Before model
performed best, albeit similarly to the All model, and bet-
ter than the After model (Fig. 6, D and E). Finally, we com-
pared the receiver operating characteristic (ROCs) for each
model to assess the quality of the binary classifiers; these
plot the true positive rate (i.e., the model predicts the
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Figure 4. Integration of movement varia-
bles improves diffusion model fits. A:
equation for the nondecision time (ndt) in
the movement drift diffusion model (DDM)
(mt-DDM). D: comparison of the ndt pre-
dicted by the DDM and mt-DDM during an
example behavioral session. B: equation
for the decision boundary in the move-
ment delay DDM (md-DDM). E: compari-
son of the boundary predicted by the
DDM and md-DDM during an example be-
havioral session. C: equation for the side
bias in the movement offset DDM (mo-
DDM). F: comparison of the side bias pre-
dicted by the DDM and mo-DDM during
an example behavioral session. G: model
comparison [Bayes information criterion
(BIC)] between the DDM, mt-DDM, md-
DDM, and mo-DDM. H: values for each of
the 2 movement parameters [position (b1)
and angle (b2)] in each of the 3 models,
mt-DDM, md-DDM, and mo-DDM.
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animal went to the right and the animal went to the right)
against the false positive rate (the model predicts the ani-
mal went to the right but the animal went to the left)
(Fig. 6F). Again, we found that the Before model was the
best, followed by All, and finally After (BeforeAUC ¼ 0.89,
AllAUC ¼ 0.87, AfterAUC ¼ 0.73).

Together, these results are consistent with a model in
which rats base their decisions on an accumulation process
where sensory information received before movement onset
is weightedmost heavily.

DISCUSSION
In this study, we used a free-response version of a pulse-

based perceptual integration task to study head move-
ments during evidence accumulation. A key feature of this
task is that visual stimuli are presented until an animal
reports its decision. Behavioral analysis suggests that rats
solve this pulse-based task by accumulating sensory evi-
dence: high accuracy with a positively skewed response
time distribution, accuracy increased with response time,
and choices and response times were well fit by
DDMs. Furthermore, we show that the use of head-related
positional data to estimate DDM parameters on a trial-by-
trial basis (mDDM) provided better fits than a traditional
DDM. We also found that even though rats are free to
move during the entire trial, rats tend to exhibit a period
of fixation before movement to their choice. Interestingly,
we find that sensory information presented during this
interval before movement initiation was as effective in
predicting choice as stimuli presented over the whole trial
and significantly better than stimuli presented after move-
ment initiation. Together these findings suggest that this

task is useful for studying the decision-making process,
that rats are capable of performing a free-response task
with high accuracy and long response times, and that
movement-related information can be used to infer the
latent parameters of a DDM.

These results also offer insight into the relationship
between sensorimotor and deliberative processes during de-
cision-making. A traditional class of models posits a serial
relationship between deliberation and movement, such that
motor output is entirely decoupled from evidence accumula-
tion and choice (2, 10). However, the data presented here are
inconsistent with these models. For example, we show that
that head position and angle before sensory cues predict the
starting point of accumulation in a drift diffusion process. In
contrast, our data could be explained bymodels of embodied
cognition, in which decision processing is coupled with
ongoing movement (5, 6, 10, 31). We believe the behavioral
task and analytic approach we describe here could provide a
foundation for further investigation into the relationship
between decision processes and movement. For example,
the free-response task could be combined with perturbation
experiments to alter head or bodily movements and system-
atically evaluate how this potentially changes subsequent
decisions (32). As video recording can easily be implemented
in our task, closed-loop approaches could be used to intro-
duce precise stimulus patterns that depend on the animals’
ongoing movement trajectory in an online fashion. These
experiments could be used to precisely map the relative tim-
ing of movement, evidence accumulation, and choice and
could be used to detect and assess “changes of mind” mid-
trial (33).

Identification of the circuit mechanism that links delib-
eration and movements may require neural recordings

A

B C
Figure 5. Rats’ choices are better pre-
dicted by stimuli before movement onset
than stimuli presented during movement
execution. A: functional form of the model
for the movement flash regression analy-
sis; w represents the lapse parameter. B:
psychometric curves comparing model
predictions and rat behavior. Black dots
represent rat data; error bars reflect the
95% confidence interval. Colored lines
represent the predictions of the model
shown in A. In the “All” model, flash dif-
ference is computed using the entire
stimuli presented during the trial. In the
“Before” model, only the stimuli presented
before movement onset are used. In the
“After” model, only stimuli presented dur-
ing movements are used. C: bar plot com-
paring the negative log-likelihood plots for
all fitted models. Colored dots represent
model fits for each of the 6 rats. Before
and All are the best fits to the behavioral
data.
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combined with advanced statistical approaches to dissociate
motor and cognitive factors. Prior studies have performed elec-
trophysiological or calcium recordingwhile rodents and prima-
tes performed continuous and pulsed-based accumulation
tasks (3, 28, 34–36). These studies have identified cells that ex-
hibit changes in firing rate that correlated with decision and
task variables, including sensory evidence. Some have inter-
preted these dynamics as evidence in favor of a neural imple-
mentation of the drift diffusion-like process (1). However,
despite technological advancements in neural measurement

and analysis, concrete interpretations of dynamics recorded
during these decision tasks have remained elusive (4, 37).
Moreover, it is evident that movement is widely represented
across the cortex and therefore should be considered as a factor
driving neural dynamics during decision-making (4, 38). This
presents a difficulty in interpreting neural dynamics recorded
during these tasks. However, recent approaches have pio-
neered the use of subspace identification approaches that con-
vincingly find lower-dimensional representations in which
motor and cognitive variables are separated (39).
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Comparison of Diffusion Models of Decision-Making

One of the advantages of the task we report here is that we
can measure response times, which enables fitting of the tra-
ditional DDM and a more direct comparison between accu-
mulation models (17, 40). The data from this task allowed us
to fit both traditional DDMs, in which the drift occurs contin-
uously throughout the cue period, as well as the pDDM, in
which the drift is coupled to the exact time of stimulus pre-
sentations. For the dataset described here, the continuous
and pulse models perform equivalently. However, we point
out that the pDDMwe fit is just one example of a much larger
range of accumulationmodels designed for pulse-based tasks.
For example, Brunton and colleagues (11) designed a nine-pa-
rameter accumulation model that incorporated estimates of
noise from various sources. Alternative parameterizations of
the pDDM may outperform the DDM in fitting to data from
this task.

We chose to use the continuous DDM as a foundation for
our movement DDM for several practical reasons. First and
most importantly, it provided a good description of choices
and response times in this task. Second, it was significantly
less computationally intensive to calculate the trial-by-trial
likelihood than the pulse DDM. This approach revealed that
information from rats’ movement trajectories improved in-
ference of DDM parameters (i.e., that the parameters better
described rat behavior) on a trial-by-trial basis, as indicated
by an improvement in the Bayes information criterion (BIC).
In future studies it may be possible to incorporate the move-
ment variables into the pDDM, which may improve model
performance further.

Limitations of the Present Study

Our results suggest that there is a separate stage in the evi-
dence accumulation process, before movement, when the rat
is heavily integrating sensory evidence. It is worth noting that
we cannot effectively rule out the possibility that evidence
accumulation occurs over the entire trial. One reason for this
could be that across most of the trials the flash difference
across the premovement period of the trial (i.e., the period in
which the animal is initially immobile while gathering sensory
evidence) and the entire trial are highly correlated (Pearson’s
r ¼ 0.96). This suggests that we cannot fully distinguish
between the premovement and whole trial flashes in terms of
predicting choice. However, since the premovement is largely
indistinguishable from the model fit of the whole trial flashes,
this would still suggest that stimuli integrated before move-
ment onset aremost important for determining choice.

A second limitation is that our identification of movement
onset is based on the sinusoidal model of head movements.
Although we show this model to be an accurate description
of the rat’s head trajectory during our task, we did not evalu-
ate other forms of movement, such as limb or trunk position.
It is possible that incorporation of other forms of movement
into the DDM would further improve model fits. Body move-
ments and changes in posture can drive changes in circuits
that are of interest in evidence accumulation studies, such
as the posterior parietal cortex (41, 42). Therefore, a more
global picture of movements during evidence accumulation
may be valuable to better interpret neural dynamics associ-
ated with decision-making.
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